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Introduction: These last years, scientific research focuses on the dynamical aspects

of psychiatric disorders and their clinical significance. In this article, we proposed a

theoretical framework formalized as a generic mathematical model capturing the

heterogeneous individual evolutions of psychiatric symptoms. The first goal of this

computational model based on di�erential equations is to illustrate the nonlinear

dynamics of psychiatric symptoms. It o�ers an original approach to nonlinear

dynamics to clinical psychiatrists.

Methods: In this study, we propose a 3+1 dimensions model (x, y, z + f) reproducing

the clinical observations encountered in clinical psychiatry with: a variable modeling

environmental noise (z) on the patient’s internal factors (y) with its temporal

specificities (f) and symptomatology (x). This toy-model is able to integrate empirical

or simulated data from the influence of perceived environmental over time, their

potential importance on the internal and subjective patient-specific elements, and

their interaction with the apparent intensity of symptoms.

Results: Constrained by clinical observation of case formulations, the dynamics

of psychiatric symptoms is studied through four main psychiatric conditions were

modeled: i) a healthy situation, ii) a kind of psychiatric disorder evolving following

an outbreak (i.e., schizophrenia spectrum), iii) a kind of psychiatric disorder evolving

by kindling and bursts (e.g., bipolar and related disorders); iv) and a kind of psychiatric

disorder evolving due to its high susceptibility to the environment (e.g., spersistent

complex bereavement disorder). Moreover, we simulate the action of treatments on

di�erent psychiatric conditions.

Discussion: We show that the challenges of dynamical systems allow to understand

the interactions of psychiatric symptoms with environmental, descriptive, subjective

or biological variables. Although this non-linear dynamical model has limitations

(e.g., explanatory scope or discriminant validity), simulations provide at least five

main interests for clinical psychiatry, such as a visualization of the potential di�erent

evolution of psychiatric disorders, formulation of clinical cases, information about

attracting states and bifurcations, or the possibility of a nosological refinement of

psychiatric models (e.g., staging and symptom network models).

KEYWORDS

psychiatric disorders, computational psychiatry, dynamical systems, symptoms dynamics,

theoretical psychiatry

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1099257
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1099257&domain=pdf&date_stamp=2023-02-03
mailto:christophe.gauld@chu-lyon.fr
mailto:damien.depannemaecker@univ-amu.fr
https://doi.org/10.3389/fpsyg.2023.1099257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1099257/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Gauld and Depannemaecker 10.3389/fpsyg.2023.1099257

1. Introduction

Contemporary psychiatric nosology is based on categorical

and static taxonomic distinctions. Thanks to the International

Classification of Diseases, Eleventh Edition (ICD-11) (CIM, 2019)

and the Diagnostic and Statistical Manual of Mental Disorders,

Fifth Edition (DSM-5) (Association, 2013), the operationalization of

psychiatric disorders within descriptive and categorical nosographies

has been one of the most important advances in contemporary

psychiatry (or “psychopathology”) (Kendler, 2017). Partly related to

these specificities, such classification systems have major limitations

that substantially impede scientific and clinical progress (Krueger

and Bezdjian, 2009; Hyman, 2010). In addition to the difficulty in

“carving the nature at its joints,” i.e., clearly demarcated psychiatric

disorder entities as discrete taxa (Kendler, 2016), a large part of

these limitations stems from the conception of psychiatric disorders

as categorical kinds, aka separate entities stable over time (Zachar,

2000; Haslam and Ernst, 2002). In this way, categorical psychiatric

disorders as they are present in contemporary psychiatric nosography

have at least three main limitations. First, they do not consider the

temporal dynamics of psychiatric symptoms (Hitchcock et al., 2022).

For instance, the category of schizophrenia provides an overview of

the clinical picture of a patient, but fails to identify the evolution

of his/her symptoms as events unfolded day after day and week

after week. Secondly, categorical disorders cannot account for the

intrinsic non-linearity of the evolution of disorders, as it is perceived

in patients in clinical practice. There are indeed phenomenological

transitions in the clinical state of a patient, sometimes slow and

sometimes brutal, which are difficult to explain by a single psychiatric

category (Nelson et al., 2021). Finally, these psychiatric categories

cannot capture the intra-individual variability of the symptoms of

a patient. For example, a series of studies have shown that there

may be up to 1,030 unique symptom profiles of major depressive

disorder (Fried and Nesse, 2015), or with any combination and

classification, up to 636,120 ways to have a post-traumatic stress

disorder (Galatzer-Levy and Bryant, 2013).

1.1. Psychiatry and dynamical systems

Psychiatric disorders are thus dynamical conditions (Demic

and Cheng, 2014). They may be conceived as evolving entities,

varying over time under the pressure of allostatic loads (i.e.,

accumulations of external factors over time), according to the

evolution of symptoms (e.g., a delirium reinforcing the interpretative

mechanisms) or according to subjective perceptions. A flow

of current research theoretically aims to show that psychiatric

disorders can be modeled dynamically (Kelso, 1995). Dynamical

models aim to provide a precise outline accounting for the

evolution of various psychiatric disorders or conditions over time,

according to different types of temporal evolutions. For instance,

Schizophrenia Spectrum (SS), Bipolar and related Disorders (BD),

Major Depressive Disorders (MDD) evolve by outbreaks and

oscillations. Attention Deficit/Hyperactivity Disorders (ADHD),

Autism Spectrum Disorders (ASD) are considered as more

continuous. Others, as Obsessive-Compulsive Disorders (OCD),

normal grief or Persistent Complex Bereavement Disorder (PCBD)

raise the question of an evolution influenced by various contextual

factors (Association, 2013). However, despite a number of theoretical

expectations on dynamical systems (Nelson et al., 2017), these

theories have been under-applied in psychiatry.

1.2. Three kinds of theoretical clinical
proposals

We have identified the existence of at least four main types

of non-modeled clinical theoretical proposals in the psychiatric

literature. The first one corresponds to the 3P model (Wright

et al., 2019). The 3P model is defined as a model considering

3 factors: predisposing, precipitating and perpetuating (Spielman,

1986). Predisposing factors makes the system sensitive to a stimulus,

and depends on the prior state of the system states. Precipitating

factors initiate the dynamics of psychiatric disorders under the

action of a trigger (named “kindling,” see below). The interaction

between the first two factors (the predisposing and precipitating

factors) is sometimes called a “stress-diathesis” model. Perpetuating

factors keep the system burnished despite the absence of stimuli. The

3P model allows to understand the evolution of patients from the

early stages of neurodevelopment, and to visualize their evolution

over the life-course as a function of the influence of the three

aforementioned factors. To our knowledge, however, the 3P model

has never been mathematized.

The second kind of clinical theoretical proposal corresponds

to the kindling model. This clinical formulation, from the field of

epilepsy, explains the manifestations of a relatively short stage of a

psychiatric disorder. At a during fleeting moments of susceptibility

(e.g., from a few hours to a few weeks), a triggering factor would

lead to expressing themanifestations of this disorder. This psychiatric

disorder bursts by successive acute manifestations on a relatively

short time scale (Adamec, 1990). When the system is above a certain

threshold, the kindling formulation brings together two parameters:

an increase in the frequency of cycles of bursting, and a triggering of

these cycles more and more independently of environmental factors

(i.e., reflecting a phenomenon of sensitization).

The third kind of clinical theoretical proposal corresponds to

staging models. Staging models are defined as psychiatric models

aimed at distinguishing subgroups evolving by (successive) stages

(McGorry et al., 2014). However, this proposal remains based on

a linear conception of psychiatric disorders (Nelson et al., 2017).

We insist on these notions of linearity and non-linearity because

we are going to propose a model which is by definition non-linear.

Non-linearity is used to describe a situation where there is no direct

relationship between an independent variable (e.g., “the depression”)

and a dependent variable (e.g., “anhedonia”), i.e., where it cannot be

drawn a “straight-line” between them.

Finally, the fourth kind of clinical theoretical proposal

corresponds to the conception of psychiatric disorders through

the prism of dynamical systems, as we are going to explain, develop

and use in this work.

1.3. Case formulations

In this article, we propose to use dynamical systems in order

to build a computational model to apprehend the dynamics of
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psychiatric symptoms. Three methodological anchors allow this

development: case formulations, wealth of dynamic systems and

desire for a manipulable model.

First, the main goal of the use of dynamical systems is to

computationally validate empirical observations made by clinicians

and researchers of the psychiatric field. This computational

model is based on case formulations of different psychiatric

disorders and conditions and aggregated symptoms. We define

(stereotyped) case formulations as the psychiatric disorders and

conditions of a given patient. These are typical cases of clinical

observation. Case formulations aim to model the characteristics

of specific individuals, e.g., “an individual with an autism

spectrum disorder.” This computational model is thus designed

in a contingent way to exemplify the phenotypes of psychiatric

disorders. These stereotyped case formulations are those described

in the textbook of clinical psychiatry and transmitted to any

clinician in his/her elementary formation, and as he/she can

then observe it in his/her daily practice (corresponding to

irrefutable and prototypical cases of dynamical evolutions of

psychiatric disorders). Such case formulations serve as tools that

help organize complex and contradictory information about a

person (Eells et al., 1998). Thus, case formulations help to

describethe stereotypical description of the temporal evolution

of psychiatric disorders, and phenomenologically reproduce the

empirical or simulated dynamics of psychiatric disorders (e.g., the

clinically observed relationships between the psychiatric variables),

as described in the empirical and historical descriptions of clinicians

and researchers.

Such dynamical model will allow to learn about non-linear

phenomena and instability, major variations related to fluctuations

in initial conditions, phenomena of resilience and fragility

or the attainment of tipping points (transitions) and steady

states, attractors and oscillations between multiple stability in

response to internal conditions or external stressors. It also

incorporates the elements mentioned in the three previous

kinds of clinical modeling, e.g., predisposing, precipitating

and perpetuating factors, consideration of different time

frames, sensitization (kindling) and stages (staging models) of

psychiatric disorders.

First, current computational models found in the literature

integrate biological factors, can be predictive, are interested in

different time scales, but rare are the models that allow the

common integration of all these variables. Studies are restricted to

parameters such as noise from the environment (e.g., psychosocial

stress) (Huber et al., 2000) or monovariable approaches (unlike our

4 variables) (Demic and Cheng, 2014). Moreover, computational

psychiatry models also rarely integrate symptoms. Secondly, a

common joke in the field of computational psychiatry reports that

the number of articles promoting the theoretical promises of the

field has exceeded the number of its empirical articles. Complex

dynamical systems theories have been used to metaphorically explore

psychiatric disorders (e.g., depression which can be understood

as a metaphorical “stuck state” of emotional processing) (King

et al., 1983; Boldrini et al., 1998; Bystritsky et al., 2012; Hayes

et al., 2015; Sulis, 2021). However, this metaphor has largely

remained highly theoretical and has only marginally resulted in a

manipulable model based on the dynamical system (Durstewitz et al.,

2021).

1.4. Main goals

Based on these theoretical considerations, no computational

model considering both symptomatology, internal factors,

environment and temporality (i.e., the four variables of the

model presented below) seems to exist in the scientific literature.

We seek to go beyond theoretical contributions by proposing a

variable modeling environmental noise (z) acting on the patient’s

internal elements (y) with its temporal specificities (f ) and

symptomatology (x).

Here, we propose such a dynamical model as a structure

able to receive simulated or empirical data, reproducing the

phenomenological dynamics of psychiatric disorders. The whole

interest of such a model is precisely to be able to get away from

the traditional diagnostic categories to apprehend a multitude of

empirical or simulated symptoms in a transdiagnostic way. The

“toolbox” constituted by this model can, for instance, integrate both

anhedonia and low mood (major depressive disorder category) and

acoustico-verbal hallucinations (schizophrenia category). We believe

that this granularity at the scale of the symptom is particularly

important for clinical psychiatry.

Moreover, because of its desire to be generalizable to different

types of disorders and adaptable to different datasets, this toy-model

differs from a certain number of other dynamic models of psychiatric

disorders found in the scientific literature (Durstewitz et al., 2021).

We propose here a toy-model to study the dynamics of

psychiatric symptoms, which reduces complexity by considering

aggregates of non-linear relationships between a limited number of

variables depending on time: environment, internal elements (e.g.,

subjective phenomenological experiences or biology) and symptoms.

Such a model is based on equations intended to reproduce case

formulations. It produces an abstract representation of patients.

It is not built on empirical data collected in research. Such a

computational model is thus called a toy-model. In a toy-model,

abstract values correspond to qualitative behaviors empirically

perceived in clinical practice. As we will discuss, such a toy-model

could only serve to apprehend, understand, or support debates on

the possible dynamics of psychiatric disorders. As its name indicates,

a toy-model is deliberately used to explain and make practical a

behavioral function, like a box containing balls, which is considered

as a toy-model allowing to understand, in a simplified way, both the

solar system and the interactions between atoms. As has already been

proposed in the context of epilepsy (Depannemaecker et al., 2021)

under the name of “epileptor” (Jirsa et al., 2014) (which accounts

for electrophysiological brain activity), this dynamical modeling of

psychiatric symptoms, internal elements and environment could thus

be qualified as a “psychiator.”

2. Methods

2.1. Research methodology

We propose a model based on dynamical system for psychiatric

disorders. This model is based on the theory of dynamical

systems, which offers a framework for modeling the evolution

of variables as a function of time. We used a structure, able

to receive simulated data, reproducing the phenomenological
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FIGURE 1

Cartoon representation of the computational dynamical toy-model of psychiatric disorders. The three equations are intrinsically linked by their

interacting variables. The equation on the left (variable z) represents the e�ect of the external environment as perceived by the patient. The equation in

the middle (variable y) represents the aggregation of internal elements (e.g., biological). The equation on the right (variable x) represents the intensity of

symptoms. Empirical or simulated data can be “included” in these abstract variables (i.e., their precise identification does not change the model and its

dynamics). The 3-dimensional phase space at the bottom of the figure corresponds to the toy-model presented in this study.

dynamics of psychiatric disorders. In order to avoid starting from

psychiatric categories, we isolated variables from case formulations

of different psychiatric disorders and conditions and aggregates

of symptoms.

The model captures the temporal evolution of a phenomenon

using mathematical differential equations, which intrinsically

integrate temporality. Differential equations allow to calculate

next states given a current state, depending on time. In a

first-order differential system, the state of a variable at a time

t is calculated based on its variation with respect to time t-

1t. The rate of amplitude changes over time will determine

the time scale. Each equation composing the system can vary

according to its own time scale. This notion of time scales is

an important consideration in psychiatric disorders because

psychiatric acute events occur on a much shorter scale (minutes,

hour, day, weeks) than the longer time scale of the development

and consequences of a psychiatric disorder (months, years,

decades). Thus, to model psychiatric disorders, a fast sub-system

helps to switch from a basic (healthy or already pathologically

latent) state to a state with high level of symptoms. A slower

system is needed to drive the transition between these states.

Therefore, a slow-fast system is proposed, including these different

time scales, in which an external input drives the transition

between states.

We seek to infer the dynamical relationships that exist

between the variables producing a psychiatric phenomenon.

Thus, we describe the expected temporal trajectory of the

variables, by including different relevant psychiatric aspects

into the equations to obtain the desired phenomenological

characteristics. The parameters are identify in order that the

simulation dynamics correspond to clinical observations. The

modeling of psychiatric disorders could have been carried out

in other ways. Our primary goal is to computationally match

clinical observations.

2.2. General presentation of the model

As schematized in Figure 1, the set of elements which should

be integrated into the model, in order to account for the observed

evolution of the psychiatric disorders modeled, should be: 1) A

first variable x, which correspond to the intensity (or “apparent

level”) of symptoms; 2) A second variable y, which aggregate the

internal elements of a patient, interacting with the intensity of

symptoms. This variable could refer to his/her “subjective state,” or

“phenomenological state,” but also to biological elements (e.g., genetic

data or brain morphological data). It is thus called a "potentiation

variable,” because it potentializes the intensity of symptoms; 3) A

third variable z, which correspond to the external environment as

it is perceived and filtered by the patient. In addition to these

variables, we add a fourth variable f , corresponding to the slow

temporal fluctuations. This variable depends on y because the onset

of symptoms depends primarily on the “subjective state" of the

patient, i.e., its potentiation. In other words, there can be temporal

fluctuations only if the patient describes subjective states, which are

themselves at the origin of a potentiation of the symptomatology. In

this computational model, we hypothesize that a slow accumulation

in f allow a (slow) transition toward the pathological state. We

seek to model the interactions between variables x, y, z (see Results

for details of the effects of these interactions). The variables in the

toy-model do not in any way prejudge any (top-down or bottom-

up) causality, but rather are dependent variables interacting in a

coupled way.
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TABLE 1 Description of the parameters of the toy-model.

τx,y,z,f Time scales of the four equations.

Smax Maximal level of symptoms.

Rs and Rb Sensitivity: the difficulty in triggering the system. Rs refers to

sensitivity in terms of symptoms. Rb refers to sensitivity in

terms of internal elements (or potentiation).

λs and λb Slope of the symptom and internal elements (or

potentiation) curves. λs corresponds to the increase in the

intensity of symptoms x as a function of the subjective state

of the patient y. λb corresponds to the increase in the

internal elements (or potentiation) y as a function of the

environment z.

P Maximal rate of internal elements of the systems: the

aggregation of biological, psychological or

subjective/phenomenological elements. It refers to the

fabrication of the semantic configuration of a phenotype

from a set of biological signals. It is an element of

potentiation of symptoms.

L Level of predisposing factors: it contributes to a permanent

shift in the internal elements (potentiation).

λf Scaling factor of the slow evolution of the fluctuations

affecting L

S Overall sensitivity level to the environment.

α and β Weight of the effect of the variable x and y on the perception

of the environment

The computational toy-model is thus described by the following

system of equations:































































τx
dx
dt

=
Smax

1+exp(
Rs−y
λs

)
− x

τy
dy
dt

=
P

1+exp(
Rb−y

λb
)
+ fL− xy− z

τz
dz
dt

= S(αx+ βy)ζ (t)− z

τf
df
dt

= y− λf f

The literal descriptions of the parameters of the toy-model are

given in Table 1.

2.3. Equation 1: Modeling of symptom
intensity

The first Equation (1) can be understood as: "The intensity of

symptoms increases due to subjective state y of the patient, and

saturate to a maximal value Smax” (i.e., referring to a model with

sigmoïdal function).

τx
dx

dt
=

Smax

1+ exp(
Rs−y
λs

)
− x (1)

If nothing participates to maintain high intensity of symptoms,

the intensity of symptoms decreases over time (modeled with the

exponential decay −x). The evolution of the intensity of symptoms

occurs with the time scale of τx. The Rs parameter corresponds to

the sensitivity, i.e., the difficulty in triggering the system in terms of

potentiation (i.e., if Rs is high, the appearance of symptoms occurs

only for a very high value of the variable y). It can be seen as a form

of sensitivity (or propensity) to develop symptoms depending on the

internal elements. The λs parameter corresponds to the increase in

the intensity of symptoms x as a function of the internal elements

of the patient y, which is therefore almost linear in the middle of

the curve (λs is the slope of the symptom curve where the sigmoïd

is centered).

2.4. Equation 2: Modeling of internal
elements

τy
dy

dt
=

P

1+ exp(
Rb−y
λb

)
+ L− xy− z (2)

The second Equation (2) refers to the internal elements of a

patient. The variable y evolves on the time scale τy, and depends

on the elements described below. The first term ( P

1+exp(
Rb−y

λb
)
) may

be seen as the effect of the aggregate of internal elements underlying

elements which have a dynamical effect depending on the state of the

patient. A maximal fixed level of potentiation P corresponds to the

subjective level of a patient allowing the existence of symptoms. In

the Cambridge model, it could be seen as the “primordial soup,” i.e.,

the making of the semantic configuration of a phenotype from a set of

biological signals (Berrios and Chen, 1993). In other words, P refers to

the influence of the internal elements on the expression of symptoms

through the variable y. The Rb and λb parameter are interpreted

as for the intensity of symptoms but regarding internal elements

(i.e., in terms of potentiation). The parameter L corresponds to the

level of predisposing factors that contribute as a permanent shift in

the potentiation. This parameter gives the baseline of predisposition

for a psychiatric disorder. It corresponds to the basic level toward

which the system tends when the intensity of symptoms diminished.

The decay in time of this state potentiation being faster soon

after paroxysmal symptomatic period, the decay is model by (−xy).

Finally, the variable y is influenced by the perceived environment

through z.

2.5. Equation 3: Modeling of perceived
environment

τz
dz

dt
= S(αx+ βy)ζ (t)− z (3)

The third equation refers to the environment (or external world)

perceived by a patient, modeled by the variable z (Equation 3), which

evolves with a time constant τz . It depends on the overal sensitivity

level S, and the joint effects of symptoms x and the potentiation y

respectively pondered by factor α and β . The factors α and β may

be positive or negative depending on the type of psychiatric disease

considered. The perceived environment integrates the equation as

external noise ζ (t), set between –1 and 1 with Gaussian distribution.

The release occurs with an exponential decay (−z).
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2.6. Equation 4: Modeling of temporal
specificities

A fourth equation can be added to model slower processes of

psychiatric disorders. This equation is equivalent to a change of a

parameter over time to capture elements on a much longer timescale,

especially at the scale of a lifetime (Equation 4):

τf
df

dt
= y− λf f (4)

This equation could be adapted according to the fluctuations of

the values of λf ). These fluctuations can create oscillations, or slow

evolutions of other variables over the long term. This is a variable

of slowness, which interacts at a longer time with the other three

variables evolving more rapidly. The variable depends on the internal

potentiation y, and affect the latter as a multiplicative factor of L,

the level of predisposing factors. Thus, the differential equation of y

become (Equation 5):

τy
dy

dt
=

P

1+ exp(
Rb−y
λb

)
+ fL− xy− z (5)

2.7. Set of constraints applied to the model

Due to the structure of these equations, we have to consider a set

of constraints.

First, we are looking for a system representing several states,

accounting for phase transitions: 1) of psychiatric states below a

first threshold delimiting a state of health and a pathological state;

2) of psychiatric states above the threshold of psychiatric disorders;

3) of psychiatric states corresponding to the maximum intensity

of symptoms, i.e., the most intense state of crisis describable for

a disorder.

Secondly, configurations containing negative x (the intensity

of symptoms) and y (the “subjective state” of the patient, a

variable of potentiation) are not considered, as they are not

(patho)physiologically plausible.

Thirdly, the rate of the noise ζ (t) is chosen at 0.01, meaning

that the perceived environment variable z changes every 0.01 days

(noise will be generated every 14.4 min). It is a compromise between

the duration of variability of the symptoms of psychiatric disorders

and their environment (i.e., considering a psychological state change

every 14.4 min). In other words, the model provides a smoothness

of 14.4 min, i.e., informs about potential changes in its variables

approximately every quarter of an hour. This contingent choice

captures most symptomatic variations of psychiatric disorders, but

it does not record environmental noise without clinical value. For

instance, a longer time (e.g., 12 h) would have missed potentially

important information like mood variations during the day in the

case of cyclothymia or behavioral disorders, while a shorter time (e.g.,

10 s) would have captured too much noise without clinical value like

emotional reactions to any life event.

Fourthly, the Smax parameter is fixed on a Likert scale (steps from

0 to 10). In the simulations, we saturate the scale to 10, to challenge

the system to design maximum symptom intensity. Conversely, the

other parameters cannot be quantified or bounded, because they

depend on each patient specifically.

We use an Euler integration method with dt = 0.01 for the

simulations given in the Results section.

2.8. Presentation of the simulations

In the following section, we will perform four simulations based

on four case formulations to verify that the model captures the

following stereotypical dynamics of psychiatric conditions: a healthy

condition, a schizophrenia spectrum disorder, a rapidly cycling

bipolar disorder, and a persistent complex bereavement disorder.

From the observed dynamics of simulations of these four case

formulations of psychiatric disorders, conditions and aggregates of

symptoms, and based on this set of equations, we will propose

to identify contingent relative threshold values (maximum and

minimum) for each of the 13 parameters of the x, y, z equations of

model. These values will be identified empirically to be consistent

with clinical observations. We will add for each of these simulations

an external event that acts as an environmental trigger, not related to

the patient. We consider a practical model which includes variations

between its limit cycles and its fixed points, with an influence of

the noise varying the characteristics of the system, and potentially

several bifurcations.

Finally, in addition to these four simulations, we will propose a

fifth simulation in which we visualize the effect of a therapeutic action

according to knowledge and stereotyped case formulations.

3. Results

We used a toy-model built on differential equations to simulate

the dynamics of psychiatric conditions and disorders through

case formulations. Depending on the variability of the parameters

handled in this toy-model, various dynamics of different psychiatric

disorder could be modeled. If empirical data from research has been

incorporated into the model, although each of these conditions tends

to be as stereotyped as possible relative to empirical observations

of clinical practice, each condition could be dynamically different

according to the interindividual variations of the patients. Thus,

in each of the following case formulations, based on observation

of stereotypical cases, we can identify that each dynamic could be

observed when the value of a parameter increases or decreases.

3.1. Identification parameter values for the
simulations

Constrained by clinical observations, simulations of the four

following psychiatric conditions (named here Figures 2A–D) provide

relative parameter values which correspond to the maximum

and minimum thresholds found empirically in order to obtain

variable behavior in the simulations which are consistent with case

formulations (Table 2).

3.2. Dynamics of psychiatric disorders:
Simulation results

3.2.1. Case formulation 1: Healthy situation
In this case formulation, described in the panel (a) of the Figure 2,

the modeled patient through the toy-model is in one possible healthy

state. The corresponding parameters are given in Table 2, which
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FIGURE 2

Time series of the four simulations for di�erent sets of parameters. Negative events from the environment (variable z) are labeled with an asterisk. (A)

Healthy situation: the negative event creates transient symptoms (x), potentiation of internal elements (y), and environmental sensitivity, and then returns

to the baseline healthy level. (B) Constant symptom pathology (e.g., schizophrenia spectrum): symptoms appear at some point in life when potentiation

has increased due to slowly changing accumulation variable f. The pathology is strongly expressed when the negative event occurs, and weakly a�ects

the other variables. (C) Oscillating symptom pathology (rapid cycling in bipolar disorder): symptoms appear at some point in life when potentiation has

increased due to a slow changing accumulation variable f. The disorder is strongly expressed when the negative event occurs which weakly a�ects the

other variables. (D) A disorder based on oscillating symptoms (persistent complex grief disorder): a negative event triggers and stabilizes the oscillations

despite the disappearance of this event.

TABLE 2 Values of the 13 parameters for the 4 simulations (or case formulations).

Smax Rs λs τx P Rb λb L τy S α β τz

Figure 2A 10 1 0.1 14 10 1.04 0.05 0.2 14 4 0.5 0.5 1

Figure 2B 10 1 0.1 14 10 0.904 0.05 0.2 14 4 0.5 0.5 1

Figure 2C 10 1 0.1 14 10 1.04 0.05 1.01 14 10 0.5 0.5 1

Figure 2D 10 1 0.1 14 10 1 0.05 0.6 14 4.5 0.5 0.5 1

For all simulations λf = 1 and τf = 720.

thus provide the basic relative threshold values from which other

psychiatric conditions will evolve.

At a random time of 5,500 days (about 15 years), a potentially

destabilizing life event occurs. It could be, for instance, the death of a

loved one. However, given the healthy characteristics of the modeled

patient (depending on its different values of x and y), this event causes

at most a normal grief, with a brief resolution of the symptoms. After

the effect of the perturbation, all variables come back to their healthy

initial level.

3.2.2. Case formulation 2: Schizophrenia spectrum
In this case formulation, described in the panel (b) of the Figure 2,

the patient would be diagnosed with a schizophrenia spectrum.

We identify that these dynamics could be observed when the

Rb decreases, corresponding to a decrease in resistance. Thus, less

resistance leads to an increase in the potentiation (y) and thus to a

more intense development of symptoms (x).

At the random time of 5,500 days, in the absence of any

intervention, a potentially destabilizing life event occurs. After this

event, the symptoms persist due to different patient parameters

simulated. We observe the complete absence of responsiveness to

environmental stimuli.

3.2.3. Case formulation 3: Rapid cycles in bipolar
disorder

In this case formulation, described in the panel (c) of the

Figure 2, the patient would be diagnosed with a rapidly cycling

bipolar disorder.

Here, the Rb (i.e., sensitivity or resistance) is different from the

formulation box (b), but identical to (a). However, the P (i.e., base

level of potentiation) is much higher in this formulation case. This
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difference leads to the occurrence of rapid cycles. Moreover, the

S (overall sensitivity level to the environment) is very high: the

individual perceives his/her environment in a very senstive way.

Each complete cycle lasts approximately 100 days, with a

symptom plateau lasting approximately 15 days, similar to what

can be found in clinical practice. Finally, we retrieve that despite

the presence of an intense life event, there is no change in the

patient’s sensitivity to his/her environment or in the intensity of

the symptoms.

3.2.4. Case formulation 4: Persistent complex
bereavement disorder

In this case formulation, described in the panel (d) of the

Figure 2, the patient would be diagnosed with a Persistent Complex

Bereavement Disorder (PCBD).

In the PCBD, it is precisely the onset of an intense life event that

causes this disorder. However, unlike the situation (a) in which the

intensity of symptoms and the sensitivity to the environment returns

to the threshold of normality over time, the patient modeled in this

case formulation continues to have mood fluctuations.

This case formulation is thus close to the healthy situation, except

for the P which is slightly higher, with a slightly lower resistance Rb:

this slight shift leads to the non-return to the healthy state.

3.2.5. Action of psychiatric therapeutics on
di�erent psychiatric disorders

In the Figures 3A, B, correspond to the Figure 2B, aka to the

schizophrenia spectrum. In the Figure 3A, the given treatment is

relatively efficient, but its effect is transient after some oscillations.

This is the stereotypical case of antipsychotic treatments in

schizophrenia, which take effect after several weeks and require

adjustments related to early relapses.

In the Figure 3B, the treatment does not work well but

enable brief moments of improvement and a slightly lower overall

symptom intensity.

In the Figure 3C, the high intensity of symptoms present at the

beginning of the period immediately decreases (on/off effect). This

case formulation has a symptomatology which appears from birth,

as is the case with, for instance, attention deficit disorders with or

without hyperactivity. It could then be a treatment with (for instance)

methylphenydate, having a rapid efficacy in this disorder/condition.

In the Figure 3D, corresponds to Figure 2C, i.e., rapid cycling

bipolar disorder. We find with the treatment (e.g., lithium) an

increase of healthy state over time. Note however that the treatment is

insufficient, but it still changes the frequency, regularity and intensity

of cycles.

4. Discussion

In this simulation study, we proposed a toy-model (the

“psychiator”) that can phenomenologically reproduce the time

evolution of the intensity of psychiatric symptoms, interacting with

the internal elements and his/her perceived external environmental

inputs, while considering different time scales. This computational

model enables to understand the effects of non-linear relations

between different psychiatric disorders’ determinants. It has a set of

strengths and limitations that we will detail. The Figure 4 helps to

show the importance of such simulations by offering a comparison of

the time series of the four variables, the cyclic trajectory in the phase

space of the three fast variables, and the phase plane of a subspace

of the system (i.e., what “draw” the equations in space, with the

visualization of the different dynamic objects of the system such as

the stable or unstable fixed points).

4.1. Main interests

We retrieve at least five main interests of such a computational

toy-model.

First, by varying the values of the parameters, such a model

allows visualization of simulations of different case formulations of

psychiatric conditions and disorders and aggregates of symptoms.

Such visualizations allow to find potentially new endpoints for clinical

and research purposes, which in themselves enables computational

models to be refined. This model allows to show that the interactions

between three relatively simplified variables lead to behaviors that

are very difficult to intuitively interpret. This complexity thus

demonstrates the need to consider non-linear relationships rather

than single variable-phenotype relationships at the clinical level. For

instance, for psychotherapy, such non-linear formalization of the

patient behaviors can help guide indications for specific drug therapy.

It can also constitute a didactic and pedagogical tool to help the

patients to understand the (non-linear) factors at the origin of their

distress (Burger et al., 2020; Fried and Robinaugh, 2020).

Secondly, this model provides a high flexibility, allowing a large

number of concepts to be discussed and made practical. Indeed, its

interest lies in the possibility of using a large number of different

empirical data from research in psychiatry, clinical psychology or

neuroscience, with different actions on the parameters of the toy-

model, to observe in particular the inter- and intra-individual

differences of psychiatric disorders. For instance, this model is

sufficiently generic to be interpreted for different type of symptoms.

Moreover, the versatility of this model (i.e., the model can be

adapted to many different psychiatric disorders and psychological

conditions) allows to compare the differential evolutions of these

disorders. This comparison could help to specify their phenotypes

and refine precision medicine. Psychiatry is struggling with the issues

of differential diagnoses (i.e., distinguishing two disorders whose

symptoms overlap) and with the issues of comorbidity (i.e., assessing

the need to distinguish two conditions or to combine two of them into

one). In recent decades, no diagnostic biomarker, neither predictive

nor endotype have been identified to clearly define the boundaries

of psychiatric disorders: in this way, hopes lies in the differential

evolution of psychiatric disorders themselves, potentially evaluable

with such a computational model. The very large number of possible

combinations refers to the infinite number of phenotypic variations

in psychiatry. Such a model provides access to the variability of

psychiatric phenotypes for a same disorder.

Thirdly, on the therapeutic level, such a toy-model provides

information on the attracting states (i.e., the states to which the

system gravitates). This result allows to understand what stabilizes the

patient in a given (healthy) state. The warning signals leading to this

attracting state can thus be detected upstream (Hayes and Andrews,

2020).
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FIGURE 3

Time series of four simulations for di�erent sets of parameters with a therapeutic action on di�erent psychiatric disorders. The black arrow corresponds

to the beginning of the treatment. (A) Schizophrenia spectrum with e�ective treatment. (B) Schizophrenia spectrum with insu�cient treatment. (C)

Childhood-onset disorder (e.g., neurodevelopmental disorder) treated with a fast-acting drug (e.g., methylphenidate) or another therapy. (D) Rapid

cycling bipolar disorder with an ine�ective treatment but with an action on the frequency, regularity and intensity of cycles.

FIGURE 4

Example of the dynamics of a simulation of a rapid cycling bipolar disorder. (A) Time series of the four variables. The black arrow corresponds to a

therapeutic action on the internal elements of the patient (e.g., on neurotransmitters). The intensity of the symptoms becomes thus less frequent. (B)

Trajectory in the phase space of the variables x, y, z. The blue color corresponds to a decrease in symptoms and the red color to an increase in symptoms.

The cyclic nature of the trajectory appears clearly. The path at the onset of the peak of symptoms intensity is di�erent than at the o�set. (C) Plane of a

subspace of the system. The NullClines of the equations x and y appear respectively in red and blue colors. The blue dotted line corresponds to the y

NullCline after the change in the value of one of the parameters of the internal elements y. The di�erence between the dotted blue line and the solid blue

line accounts the important change of dynamics between the yellow trajectory (before treatment) and the green trajectory (after treatment).
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Fourthly, this model proposes a dynamically theoretical

framework allowing to constitute longitudinal studies and the use

of assessment tools in daily life. This model provides a flexible

framework allowing to integrate a large number of heterogeneous

data, distinguishing patient-dependent factors, her/his subjective

experience and the environment. Certainly, the absence of large

cohorts of longitudinal data in psychiatry is due to numerous

economic or organizational factors. However, they also relate to

a lack of methodological tools. In other words, such a framework

constitutes a prerequisite for the collection of longitudinal data

in psychiatry. Such methods may be integrated into moment-to-

moment ecological macro- or micro-level assessment (depending on

the period), and especially a widely used methods such as ecological

momentary assessment or joint modeling of time-to-event outcome

with time-dependent predictors (i.e., given the temporal nature

necessary to predict the onset of a disorder) (McGorry et al., 2014).

In turn, data offered by such techniques would allow to confirm and

validate this model in terms of predictivity. Regarding the clinical

utility, based on these repeated evaluations in ecological daily life,

individual predictions allow a patient to be informed of her/his level

of risk and of the (natural or under treatment) course of her/his

psychiatric disorder.

Fifthly, such a model could refine at least two kinds of nosological

psychiatric models: staging models (McGorry et al., 2014) and

symptom network models of psychopathology (Borsboom, 2017).

One of the criticisms of these proposals is that stable and static clinical

pictures at any given time could not be predicted on the basis of

a sampling of cross-sectional data (McGorry et al., 2014). Cross-

sectional data at a single point in time cannot provide predictions

about the future emergence of a psychiatric disorder. Havingmultiple

sets of cross-sectional data requires dynamic models to deal with

the nonlinearity (i.e., the absence of the direct association between

variables) (McGorry and van Os, 2013; van Os, 2013). Sets of

snapshots of clinical states can be integrated in our model to provide

information on the dynamic course of psychiatric disorders, in a non-

linear manner. For example, symptoms networks could be modeled

based on our computational dynamical model. In symptom network

models, a psychiatric disorder is defined as the steady frozen state

of a strongly connected network. A dynamic component could be

added to this definition, especially by providing a notion of threshold

corresponding to a bifurcation of the model. The evolutions and

interactions between heterogeneous variables (objective, subjective or

environmental) can be considered in dynamical symptom network

models (e.g., based onmulti-level vector autoregressionmodels using

time-series data) (Haslbeck et al., 2021).

Finally, such a ubiquitous and abstract toy-model, in future

works, would allow to propose new classifications of psychiatric

disorders according to their dynamics. We would find some

disorders particularly sensitive to the environment (e.g., OCD),

others presenting a rapid rhythmic activity (e.g., rapid cycles in

bipolarity), or others with abrupt bifurcations in their trajectory.

4.2. Limitations

This toy-model also has several limitations.

First, the explanatory scope of this model remains limited.

There could have been an infinity of models, impeding this model

from being considered as predictive. Comparable dynamics could

be found with completely different set of parameters, or even

with different ordinary equations. Nowadays, the absolute values

of parameters are not representative of any physically measurable

elements. Indeed, it is important to note that the terms of the

equation are contingent, and could have been defined differently.

In other words, there could have been several ways of defining

the dynamics of a psychiatric disorder, and this model is only

one of the answers allowing to visualize their evolution over time.

For example, mathematical solutions could be found to reduce

the number of model parameters. However, we choose to keep it

under this form to maintain intuitive clinical interpretability. To

be predictive for a given patient, the model should incorporate

her/his specific collected longitudinal values. Unlike digital twins

(i.e., data-driven mathematical models of patients that allow for

more precise and effective medical interventions), this toy-model

is not built, at first, to be personalized. However, the objective

of this study is not to select the best model (in terms of the

equation structuring), but to propose a systematic formulation of

an observed phenotypic behavior, based on the clinically relevant

variables and parameters.

Secondly, this model seems reductionist regarding clinical

practice. However, it integrates in an original way non-linear relations

between qualitatively and clinically interpretable equations. Indeed,

we have proposed a model in which it is not the biological

mechanistic structures that are modeled, but behaviors (Marr, 2010).

Moreover, we do not aim to directly capture internal biological

elements, but rather the resulting output interacting with the

symptoms and perceived environmental variables, at a very coarse

level (Sulis, 2021).

Thirdly, it turns out that this model should be tested with

experimental data to ensure its discriminative, construct and/or

predictive validity. We hypothesize that research in psychiatry waited

for such a robust model to collect empirical data, and conversely

that no robust model could be built due to a lack of empirical

data. The absence of measurements of such values is largely due

to the absence of a model as we propose it. We are thus seeking

to break this vicious circle with such a toy-model. After empirical

validation, the structure of this computational model could serve as

an optimized framework for simulating behavior and predicting the

course of disorders. In order to choose whether certain othermethods

could allow to model psychiatric disorders in the same way, a set

of models similar to this one should be constructed, with a sorting

of these models by an analysis of the choice of the best model (in

terms of choice of the free parameters). Future studies will aim to

identify the maximum and minimum ranks of the (13) parameter

values described in the Table 2.

Fourthly, the representation of x corresponds to the intensity

of the symptoms, and that the model corresponds to an abstract

representation of psychiatric disorders. It could be necessary to refine

the model to have different kinds of symptoms. Indeed, in this

model, only the symptom intensity is discussed, but not the nature

of symptoms forming the dynamics. For instance, it is not possible to

distinguish the effect of delirium vs. acoustico-verbal hallucinations

in schizophrenia. The fluctuations do not allow to affirm whether

these are depressive ormaniac episodes. However, this computational

model aims to model the characteristics of specific individuals

(e.g., “an individual with an autism spectrum disorder”), and not a

psychiatric category (e.g., “autism spectrum disorders”). Thus, the
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absence of characterization of the nature of the symptoms is of little

importance, because our approach remains idiographic: for some

individuals, the dynamic model will evolve toward a characteristic

psychotic break, and for others, it will evolve toward a return to

the previous state, according to the individual characteristics of the

different variables.

Fifthly, a last limit concerns the potential difficulty to interpret

the dynamics of the models. Indeed, the incorporated variables

account for non-linear phenomena, which could be not intuitively

explainable to a clinician. More precisely, it could be difficult to

know why some stressors and triggers have or not an action on the

system (e.g., inducing a dissociation), why certain nonlinear effects

occur at particular times (e.g., fluctuations of affective states) or

how interactions between certain symptoms occur (e.g., low mood

and overeating or anorexia). Clinical inference from this kind of

model should be very careful. By extension, it will be necessary to

ensure that these individual-level models are not naively transferred

to group-level models.

5. Conclusion

In the history of clinical psychology and psychiatry, predicting

the occurrence of disorders and symptoms has focused on the

evaluation of a spectrum of variables – ranging from genetics to the

environment, including neurocognitive measurements or subjective

feelings. These conditions are particularly difficult to model, and

this difficulty is largely due to the lack of dynamic modeling to

model them, despite a growing theoretical literature advancing

such promises for at least several decades (Nelson et al., 2021). In

order to shift from this research, we propose with this “psychiator”

to dynamically modelize human behaviors and (subjective and

biological) internal elements in a non-linear way, while maintaining

clinical, phenomenological and biological plausibility useful to the

clinician. Although this model is only a toy-model, it offers a

conceptual basis for data acquisition, and can serve as a starting point

based on dynamic systems for establishing a theoretical definition of

psychiatric disorders and sustain nosology.
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